Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37022399

RESUMO

This article introduces a novel shallow 3-D self-supervised tensor neural network in quantum formalism for volumetric segmentation of medical images with merits of obviating training and supervision. The proposed network is referred to as the 3-D quantum-inspired self-supervised tensor neural network (3-D-QNet). The underlying architecture of 3-D-QNet is composed of a trinity of volumetric layers, viz., input, intermediate, and output layers interconnected using an S -connected third-order neighborhood-based topology for voxelwise processing of 3-D medical image data, suitable for semantic segmentation. Each of the volumetric layers contains quantum neurons designated by qubits or quantum bits. The incorporation of tensor decomposition in quantum formalism leads to faster convergence of network operations to preclude the inherent slow convergence problems faced by the classical supervised and self-supervised networks. The segmented volumes are obtained once the network converges. The suggested 3-D-QNet is tailored and tested on the BRATS 2019 Brain MR image dataset and the Liver Tumor Segmentation Challenge (LiTS17) dataset extensively in our experiments. The 3-D-QNet has achieved promising dice similarity (DS) as compared with the time-intensive supervised convolutional neural network (CNN)-based models, such as 3-D-UNet, voxelwise residual network (VoxResNet), Dense-Res-Inception Net (DRINet), and 3-D-ESPNet, thereby showing a potential advantage of our self-supervised shallow network on facilitating semantic segmentation.

2.
IEEE Trans Neural Netw Learn Syst ; 33(11): 6331-6345, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33983887

RESUMO

Classical self-supervised networks suffer from convergence problems and reduced segmentation accuracy due to forceful termination. Qubits or bilevel quantum bits often describe quantum neural network models. In this article, a novel self-supervised shallow learning network model exploiting the sophisticated three-level qutrit-inspired quantum information system, referred to as quantum fully self-supervised neural network (QFS-Net), is presented for automated segmentation of brain magnetic resonance (MR) images. The QFS-Net model comprises a trinity of a layered structure of qutrits interconnected through parametric Hadamard gates using an eight-connected second-order neighborhood-based topology. The nonlinear transformation of the qutrit states allows the underlying quantum neural network model to encode the quantum states, thereby enabling a faster self-organized counterpropagation of these states between the layers without supervision. The suggested QFS-Net model is tailored and extensively validated on the Cancer Imaging Archive (TCIA) dataset collected from the Nature repository. The experimental results are also compared with state-of-the-art supervised (U-Net and URes-Net architectures) and the self-supervised QIS-Net model and its classical counterpart. Results shed promising segmented outcomes in detecting tumors in terms of dice similarity and accuracy with minimum human intervention and computational resources. The proposed QFS-Net is also investigated on natural gray-scale images from the Berkeley segmentation dataset and yields promising outcomes in segmentation, thereby demonstrating the robustness of the QFS-Net model.


Assuntos
Neoplasias Encefálicas , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem
3.
IEEE J Transl Eng Health Med ; 9: 1800209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235005

RESUMO

Background: Accurate and fast diagnosis of COVID-19 is very important to manage the medical conditions of affected persons. The task is challenging owing to shortage and ineffectiveness of clinical testing kits. However, the existing problems can be improved by employing computational intelligent techniques on radiological images like CT-Scans (Computed Tomography) of lungs. Extensive research has been reported using deep learning models to diagnose the severity of COVID-19 from CT images. This has undoubtedly minimized the manual involvement in abnormality identification but reported detection accuracy is limited. Methods: The present work proposes an expert model based on deep features and Parameter Free BAT (PF-BAT) optimized Fuzzy K-nearest neighbor (PF-FKNN) classifier to diagnose novel coronavirus. In this proposed model, features are extracted from the fully connected layer of transfer learned MobileNetv2 followed by FKNN training. The hyperparameters of FKNN are fine-tuned using PF-BAT. Results: The experimental results on the benchmark COVID CT scan data reveal that the proposed algorithm attains a validation accuracy of 99.38% which is better than the existing state-of-the-art methods proposed in past. Conclusion: The proposed model will help in timely and accurate identification of the coronavirus at the various phases. Such kind of rapid diagnosis will assist clinicians to manage the healthcare condition of patients well and will help in speedy recovery from the diseases. Clinical and Translational Impact Statement - The proposed automated system can provide accurate and fast detection of COVID-19 signature from lung radiographs. Also, the usage of lighter MobileNetv2 architecture makes it practical for deployment in real-time.


Assuntos
COVID-19/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Algoritmos , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , SARS-CoV-2 , Tomografia Computadorizada por Raios X
4.
Healthc Technol Lett ; 6(5): 126-131, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31839968

RESUMO

The significant research effort in the domain of epilepsy has been directed toward the development of an automated seizure detection system. In their usage of the electrophysiological recordings, most of the proposals thus far have followed the conventional practise of employing all frequency bands following signal decomposition as input features for a classifier. Although seemingly powerful, this approach may prove counterproductive since some frequency bins may not carry relevant information about seizure episodes and may, instead, add noise to the classification process thus degrading performance. A key thesis of the work described here is that the selection of frequency subsets may enhance seizure classification rates. Additionally, the authors explore whether a conservative selection of frequency bins can reduce the amount of training data needed for achieving good classification performance. They have found compelling evidence that using spectral components with <25 Hz frequency in scalp electroencephalograms can yield state-of-the-art classification accuracy while reducing training data requirements to just a tenth of those employed by current approaches.

5.
IEEE Trans Cybern ; 44(10): 1884-97, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25222729

RESUMO

This paper presents a novel search metaheuristic inspired from the physical interpretation of the optic flow of information in honeybees about the spatial surroundings that help them orient themselves and navigate through search space while foraging. The interpreted behavior combined with the minimal foraging is simulated by the artificial bee colony algorithm to develop a robust search technique that exhibits elevated performance in multidimensional objective space. Through detailed experimental study and rigorous analysis, we highlight the statistical superiority enjoyed by our algorithm over a wide variety of functions as compared to some highly competitive state-of-the-art methods.


Assuntos
Algoritmos , Abelhas/fisiologia , Comportamento Animal/fisiologia , Cibernética/métodos , Modelos Biológicos , Fluxo Óptico/fisiologia , Animais
6.
IEEE Trans Syst Man Cybern B Cybern ; 41(1): 89-106, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20423806

RESUMO

The theoretical analysis of evolutionary algorithms is believed to be very important for understanding their internal search mechanism and thus to develop more efficient algorithms. This paper presents a simple mathematical analysis of the explorative search behavior of a recently developed metaheuristic algorithm called harmony search (HS). HS is a derivative-free real parameter optimization algorithm, and it draws inspiration from the musical improvisation process of searching for a perfect state of harmony. This paper analyzes the evolution of the population-variance over successive generations in HS and thereby draws some important conclusions regarding the explorative power of HS. A simple but very useful modification to the classical HS has been proposed in light of the mathematical analysis undertaken here. A comparison with the most recently published variants of HS and four other state-of-the-art optimization algorithms over 15 unconstrained and five constrained benchmark functions reflects the efficiency of the modified HS in terms of final accuracy, convergence speed, and robustness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...